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Abstract: New innovative Digital Twins can represent complex bioprocesses, including the 4 

biological, physico-chemical, and chemical reaction kinetics, as well as the mechanical and 5 

physical characteristics of the reactors and the involved peripherals. Digital Twins are an ideal 6 

tool for the rapid and cost-effective development, realisation and optimisation of control and 7 

automation strategies. They may be utilised for the development and implementation of 8 

conventional controllers (e.g. temperature, dissolved oxygen…), as well as for advanced 9 

control strategies (e.g. control of substrate or metabolite concentrations, multivariable 10 

controls), and the development of complete bioprocess control. This chapter describes the 11 

requirements Digital Twins must fulfil to be used for bioprocess control strategy development, 12 

and implementation and gives an overview of research projects where Digital Twins or “early-13 

stage” Digital Twins were used in this context. Furthermore, applications of Digital Twins for 14 

the academic education of future control and bioprocess engineers as well as for the training 15 

of future bioreactor operators will be described. Finally, a case study is presented, in which an 16 

“early-stage” Digital Twin was applied for the development of control strategies of the fed-17 

batch cultivation of Saccharomyces cerevisiae. 18 
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DoE Design of experiment 
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1 Introduction 54 

The development of control strategies for bioprocesses poses huge challenges for process 55 

engineers. The need for new tools that can help with this task, therefore, is enormous. 56 

Optimisation of controllers during production runs is usually exceedingly difficult or even 57 

impossible. Thus, bioprocess operation must be interrupted for control optimisation. 58 

Interruptions of a production run, as well as inadequate control, can lead to immense financial 59 

losses, which must be avoided. A promising approach to this issue is the application of Digital 60 

Twins. The development or optimisation of control strategies may be performed using this 61 

tool, thus leading to a shortened start-up time for the newly developed or optimised 62 

bioprocess control scheme. 63 

In the early 2000s, the Digital Twin concept was first applied in mechanical engineering [1–3]. 64 

Digital Twins are often seen as virtual representations of physical systems and can map the 65 

entire life cycle of the physical system [2]. Various authors already published definitions of the 66 

term Digital Twin [1–5]. This chapter as well as [Chapter: Moser, Brüning, Hass ”Mechanistic 67 

Mathematical Models as a Basis of Digital Twins for process optimization”], which is also in 68 

this book series are mainly based on the definition given by El Saddik [3]: 69 

“Digital twins are (…) digital replications of living as well as non-living entities that enable data 70 

to be seamlessly transmitted between the physical and virtual worlds.”  71 

For further explanations refer to [Chapter: Moser, Brüning, Hass ”Mechanistic Mathematical 72 

Models as a Basis of Digital Twins for process optimization”], which is also in this book series.  73 

This chapter covers Digital Twins for the development, optimisation and realisation or 74 

implementation of bioprocess control strategies on a real process that correspond to the 75 

Digital Twin definition given by El Saddik [3], as well as operator training simulators (OTSs), 76 

which are considered by the authors to be "early-stage" Digital Twins. Although OTSs are 77 

mainly used for training purposes, they also offer enormous potential for bioprocess 78 

development, similarly to Digital Twins. OTSs are usually adapted to the real process during 79 

development or when there are significant changes in the real process. 80 

In the last section of this chapter, a case study is presented where an “early-stage” Digital Twin 81 

was used to develop process control strategies for the fed-batch cultivation of Saccharomyces 82 

cerevisiae (S. cerevisiae) in a stirred tank reactor (STR).  83 
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2 Advanced bioprocess control development, realisation and optimisation 84 

using Digital Twins 85 

Initial approaches for the application of Digital Twins as a tool for control strategy 86 

development have been successfully established in the chemical industry [4–7]. Due to the 87 

recognised potential, the application of Digital Twins as a tool for the development of control 88 

strategies is also gaining increasing interest for bioprocesses.  89 

Within this chapter, the suitability of Digital Twins for the development, optimisation and 90 

realisation of bioprocess control strategies will be highlighted. First, the general approach 91 

when using Digital Twins for the development of control strategies is outlined. Subsequently, 92 

the requirements that Digital Twins must fulfil to be used as a tool for the development of 93 

control strategies and which challenges control engineering must overcome in the case of 94 

bioprocess control is described. Finally, in the presented case study, application examples for 95 

the utilisation of Digital Twins for bioprocess control strategy development are described. 96 

2.1 General approach 97 

In the author’s opinion, the quality of Digital Twins is of utmost importance for the 98 

development of control and automation strategies [8]. The basis of applicable Digital Twins is 99 

a dynamic mathematical model, which can map the biological, chemical and physical 100 

phenomena of the real process in detail [9]. This dynamic mathematical process model should 101 

be coupled to a graphical user interface (GUI) [9]. Users can monitor and make changes to the 102 

virtual process using graphical icons in the GUI. From the author's point of view, it is 103 

advantageous, if the structure of the GUI corresponds to the process control system (PCS) on 104 

the physical counterpart. The Digital Twin GUI is a functional image, derived from the P&ID 105 

(piping and instrumentation diagram) flow chart of the real bioprocess and thus, also serves 106 

as a realistic replica of important parts of the control and automation model. A realistic GUI 107 

of a Digital Twin can, therefore, be used to check the usability (including typical operating 108 

errors), as well as the control and automation of the real bioprocess. The model of a Digital 109 

Twin is parameterised based on real process data to represent the behaviour of the physical 110 

process [10]. Another possibility to keep Digital Twin and the real process as identical as 111 

possible is an online and at-line data connection between the "twins". This enables the 112 

adaption of the Digital Twin using online and at-line data, which is particularly useful if the 113 

real process frequently changes its characteristics. 114 
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During process development or optimisation, Digital Twins can be used for the following 115 

applications: 116 

(1) Determination of suitable controller types 117 

(2) Improvement of controller performance 118 

(3) Improvement of the overall process performance through appropriate process control 119 

strategies 120 

If, for example, suitable controllers (e.g. for temperature, dissolved oxygen or product 121 

concentration) should be designed, the controller type can be selected based on simulations 122 

with the Digital Twin. An early step in controller selection should be the definition of 123 

appropriate control targets [8]. When controlling the temperature of a bioreactor, such 124 

control targets are e.g. a short rise time, a high control accuracy (especially important for 125 

temperature-sensitive organisms, particularly mammalian cells ) or a low overshoot. For 126 

example, the conventional proportional integral derivative (PID) control can be compared to 127 

a more complex nonlinear model predictive control (NMPC) by applying them to a Digital Twin. 128 

If both control strategies yield equally good control results, PID control would be preferred, 129 

because it is cheaper and easier to handle.  130 

Once a control strategy has been able to control the virtual process satisfactorily, the results 131 

are transferred to the real process. The transfer of the developed control strategy from the 132 

Digital Twin to the real process may be further simplified if the Digital Twin and the real 133 

process are linked to the identical PCS [8]. 134 

To illustrate the general approach of process control design utilising a Digital Twin, the case 135 

study in section 4 presents the selection and optimisation of suitable control strategies for the 136 

cultivation of S. cerevisiae. 137 

2.2 Design of Digital Twins as control strategy development tools 138 

To utilise a Digital Twin for the development of both conventional (e.g. single loop PID control) 139 

and advanced control (e.g. multivariable controllers, model predictive control), it must fulfil 140 

specific requirements that have to be considered during the design process of the Digital Twin. 141 

According to Hass [11], desirable characteristics of a functionally useful Digital Twin include 142 

realistic simulation of the biological, physical and chemical processes, accurate representation 143 

of automation and control actions and a GUI with a similar ‘look and feel’ to that of the real 144 
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plant [11]. Mathematical models used in Digital Twin development are classified broadly as 145 

mechanistic, non-mechanistic or hybrid models [9, 10, 12]. In this context, a model refers to a 146 

mathematical representation of certain aspects of a real-world object or phenomenon. Non-147 

mechanistic models use sets of experimental data to represent observed phenomena by 148 

fitting parameters based on the available datasets. Mechanistic models seek to represent 149 

experimental observations based on the underlying biological, chemical, and physical 150 

mechanisms occurring in the system. Mechanistic models offer excellent predictive 151 

capabilities beyond the original experimental conditions used for model development. By 152 

contrast, non-mechanistic models only offer very restricted predictive capabilities [2, 9–12]. 153 

Mathematical modelling for a Digital Twin involves several key steps. The first step is a 154 

definition of the process using appropriate diagrams and charts. A process flow diagram and 155 

a piping and instrumentation diagram (P&ID) are excellent starting points for system definition 156 

[10, 13, 14]. Ideally, verbal process description and expected modelling targets including levels 157 

of model accuracy are specified at this stage. Following system definition, appropriate 158 

mathematical models that sufficiently describe the physical, biological, and chemical 159 

processes in the system are formulated based on literature research [9, 14]. To structure the 160 

process model, it has been suggested to divide the model into smaller sub-models. One 161 

approach is the shell model introduced by Blesgen et al. [15, 16] and extended by Hass et al. 162 

[17]. In this case, the overall mathematical model of the Digital Twin is divided into a biological 163 

sub-model, physico-chemical sub-model, a reactor sub-model, a plant and peripheral sub-164 

model as well as a control and automation sub-model (see also [Chapter: Moser, Brüning, Hass 165 

”Mechanistic Mathematical Models as a Basis of Digital Twins for process optimization”], 166 

which is also in this book series). Depending on the requirements of the Digital Twin, the shell 167 

model can be extended or reduced in complexity. 168 

2.2.1 Software tools for the design of Digital Twins 169 

Further steps in Digital Twin development include model implementation using suitable tools, 170 

model parameterisation and finally model validation using experimental data. Several 171 

modelling tools for the development of Digital Twins are readily available and easy to use, but 172 

they do not provide the flexibility and adaptability needed to model all aspects of 173 

bioprocesses, as they were originally designed for modelling of chemical processes. With the 174 

increasing focus on bioprocess development, significant effort has been invested in the 175 
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development of model libraries for bioprocess unit operations in recent years. Software 176 

systems for parameter estimation and computation of algebraic and differential equations 177 

provide a user-friendly and adaptable environment for model development and 178 

implementation of Digital Twins [9–11]. 179 

For the design of Digital Twins or "early-stage" Digital Twins, that can be used for the 180 

development, optimisation and realisation of control strategies, there are already a variety of 181 

software packages available. Table 1 lists a selection of vendors and associated software 182 

products and summarises the most important features of the respective software packages. 183 

Most of the Digital Twin development tools listed are designed for the chemical industry (e.g. 184 

UniSim Competency Suite [18] or IndissPlus [19]), but some are also suitable for the 185 

development of bioprocess Digital Twins (e.g. WinErs/C-eStIM [20, 21], PerceptiveAPC [22] or 186 

TMODS [23]).  187 

Table 1 Digital Twin development tools for the process industry (adapted from [10]) 188 

Vendor Software package Key features (according to the vendors) 

Aspen Technology Aspen OTS Framework 
[24] 

Data communication links handle the exchange of data 
and commands. 

User interfaces support different views of the 
application for operators, engineers, and training 
instructors. 

DuPont Industrial 
Biosciences 

TMODS [23] Fully customised to match plant configuration, 
conditions, compositions, control schemes, safety 
interlocks and GUIs. 

Honeywell UniSim Competency 
Suite [18] 

Customisable framework for a structured operator 
competency management system. 

Interactive, navigable, panoramic 2D field operator 
training environment based on high-resolution 
photographs of the facility.  

Ingenieurbüro Dr.-
Ing. Schoop GmbH 

WinErs/C-eStIM [20, 21] Modular process automation system. 

Provides a flexible, process control and simulation 
system suitable for industrial, didactical and research 
applications. 

Complete process monitoring and operation via a user-
editable GUI. 

Simple graphical editing of controls and simulations via 
block structures, logic plans and GRAFCET with no prior 
programming knowledge required. 

Wood Group (John 
Wood Group) 

ProDyn [25] Offers off-the-shelf and customer-specific solutions. 

Operator training and learning systems, abnormal 
situation management, and process troubleshooting. 

Can be used to develop and test plant procedures. 



9 
 

NovaTech NovaTech Ethanol 
Training Simulator, D/3 
DCS [26] 

Allows breweries, biofuels facilities, and other process 
plants to develop real-to-life plant simulations. 

Training on complex process control techniques and 
correcting behavioural patterns. 

Trend visualisation, process analytics and control loop 
performance monitoring and optimisation. 

Outotec HSC Sim [27] Various simulation and modelling applications based on 
independent chemical reactions and process units. 

Graphical flowsheet and spreadsheet type process unit 
models. 

Perceptive 
Engineering 

PerceptiveAPC [22] Tools for monitoring, analysis or predictive control, in a 
logical, intuitive interface, for both batch and 
continuous processes. 

Training module and easy-to-use templates to tune and 
validate the right controller (also model-predictive 
control (MPC)) for the process. 

Protomation BV Protomation OTS [28] A real-time dynamic model that covers the complete 
operating window. 

Allows accurate simulation and training in the entire 
operating range of the plant (from start-up conditions 
up to normal operation and upset conditions). 

CORYS IndissPlus [19] Models based on first principles of chemical engineering 
with rigorous thermodynamics calculation and physical 
component properties database. 

Can accurately represent plant start-up and shutdown, 
in addition to a variety of design and abnormal 
operating conditions. 

Siemens SIMIT OTS [29] Based on the dynamic modelling of the plant. 

Flexible modelling is possible, the process can be 
emulated as a whole or in parts. 

SimGenics SimuPACT [30] The integrated software platform enables engineers to 
develop high fidelity, full-scope power and process plant 
simulators. 

Intuitive GUI which allows engineering analysis and 
operator training on the same simulation platform. 

Yokogawa Yokogawa OTS [31] OTS constantly synchronises with the plant control 
system.  

Able to predict plant internal states and plant responses, 
contributing to optimised plant operations.  

2.3 Control strategies for bioprocesses 189 

The multi-phase system in a bioprocess sets highest demands on measurement and control 190 

technology [32–34]. To maintain optimal conditions for the entire process, the composition of 191 

the liquid phase (e.g. medium), the suspended gas phase (e.g. oxygen, carbon dioxide) and the 192 

dispersed solid phase (e.g. cells, cell assemblies, enzymes) must be monitored continuously 193 

[32]. Furthermore, complex dynamics showing a wide range of time constants make it difficult 194 

to control the process without sufficient process knowledge [32]. For example, the induction 195 
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of a gene through a temperature shift or the addition of a chemical inducer affects the process 196 

several minutes after the expression of the desired protein because the formation of a 197 

metabolically active protein will cause a time delay. This kind of knowledge must be available 198 

and utilised for successful bioprocess control based on detailed process analytics [32–35]. 199 

The choice of control strategies mainly depends on the selected bioprocess and the available 200 

reactor type [33, 34]. In general, controllers are divided according to continuous (e.g. PID 201 

control, soft sensor control) and discontinuous behaviour (e.g. model predictive control (MPC) 202 

or nonlinear model predictive control (NMPC)) [34]. Controllers with continuous behaviour 203 

calculate and transmit continuous control signals based on the current process characteristics 204 

[34]. Among the best-known continuous controllers are the “conventional” controllers like 205 

two-point-, three-point-, proportional- (P-), proportional-integral- (PI-) or PID-controllers. 206 

Controllers with discontinuous behaviour only calculate control signals or profiles at specific 207 

process points [34].  208 

As an example, conventional control strategies such as  PI or PID control are generally used to 209 

control temperature [34]. In many cases, the control system should be able to maintain the 210 

desired setpoint, due to the rather weak influence of disturbances. More complex processes, 211 

such as the enzymatic hydrolysis of lignocellulosic biomass, can be significantly improved by 212 

using advanced temperature control. In this process, endoglucanase and exoglucanase are 213 

used, which show a different temperature optimum. If model-based temperature control is 214 

applied in this case, enzyme-specific temperature gradients can be operated, reducing the 215 

consumption of enzymes and significantly increasing the yield of the desired product [36]. 216 

Table 2 lists common control variables (e.g. temperature, pH-value or dissolved oxygen (DO)) 217 

of bioprocesses with their most used control strategies. 218 

Table 2 Control strategies for key variables in bioprocesses 219 

Control variable Applied control strategy 

Temperature PI control [34], MPC [36], NMPC [37] 

pH PI control [38] 

DO 
On-Off-Feedback control [34], PID control [34], Cascade Control 

[38], MPC [34] 

Flow rate (Nutrient media…) PI control  [38] 
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Pressure PI control [38] 

Concentration (Substrate, 

Product…) 
PI control [39], Fuzzy control [40], NMPC [41–43], OLFO [44–47] 

Simple control tasks can be treated using conventional controllers. For more demanding 220 

control tasks, such as e.g. concentration control, the use of advanced and model-based control 221 

strategies such as MPC or NMPC has been suggested [34, 35, 48, 49]. The choice of suitable 222 

control strategies is not only dependent on the controlled variable. If, for example, DO control 223 

is considered, on-off feedback, PID control or more complex model-based control like MPC 224 

are used depending on the requirements. In the subsequent sections, some advanced control 225 

strategies will be described that may be developed and tuned utilising Digital Twins. 226 

2.3.1 Advanced and model-based control strategies 227 

Advanced and model-based control strategies (AMBC) like NMPC are of great interest in the 228 

case of processes with fast dynamics because these controllers reduce the response time [34]. 229 

They do not operate just based on the current state of the system instead, the control action 230 

is based on the calculated evolution of the system. AMBCs utilise integrated mathematical 231 

process models for the prediction of future process behaviour. At the end of each sampling 232 

period, the future course of the control trajectory is optimised using a process model [34]. The 233 

control trajectory that fulfils the chosen optimisation criterion best is then applied to the real 234 

process [34]. 235 

The use of AMBC has already been investigated for different bioprocesses in several research 236 

works. For fermentations of S. cerevisiae NMPC was used to maximise the ethanol (EtOH) yield 237 

by controlling the glucose solution feed rate [42]. For the fed-batch cultivation of Chinese 238 

hamster ovary (CHO) mammalian cells, a glucose concentration fixed set-point control was 239 

implemented and tuned to enhance product quality and reduce costs [43]. To enhance the 240 

sugar concentration in a cellulose hydrolysation process in a stirred tank reactor, NMPC was 241 

applied to control the feed rates of substrate and cellulase enzymes solutions [50]. 242 

Furthermore, temperature and humidity gradients of solid-state fermentation were 243 

controlled by NMPC [51]. 244 

In all listed research works the use of AMBC resulted in higher product concentrations at lower 245 

resource demands as compared to processes with conventional control strategies. 246 
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2.3.2 Open-loop-feedback-optimal (OLFO) control strategy 247 

A special form of AMBC is the open-loop-feedback-optimal (OLFO) strategy [52, 53]. The OLFO 248 

controller belongs to the class of adaptive NMPCs. It consists of a process model, a model 249 

parameter identification part, and an optimisation part (see Fig. 1). Model parameters are 250 

estimated frequently based on available online and/or offline data. The updated model 251 

parameters are passed on to the optimisation part, where process trajectories like substrate 252 

feeding profiles are calculated. Several optimisation criteria, such as maximized product 253 

concentrations, may be implemented in the controller. The OLFO control strategy has been 254 

investigated in a receding horizon [8, 53] and a moving horizon version [45, 47] for 255 

bioprocesses.  256 

 257 

Fig. 1 Structure of the Open-Loop-Feedback-Optimal (OLFO) control strategy [53] 258 

The OLFO strategy is particularly superior to other process control strategies if the processes 259 

are in an early development phase and have not yet been optimised. The performance of the 260 

OLFO algorithm for suspension cell cultures has already been demonstrated by Witte et al. 261 

[53], Frahm et al. [45–47] and Li et al. [44]. In the case study presented in section 4.2.3 the 262 

application of the OLFO control strategy for fed-batch cultivation of S. cerevisiae will be 263 

explained in more detail. 264 
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2.4 Digital Twin based development, realisation and optimisation of control strategies 265 

for bioprocesses 266 

In the early to mid-1980s, first OTSs representing “early-stage” Digital Twins were used for 267 

operator training in the chemical, nuclear and energy industries. In the late 1980s and early 268 

1990s, the implementation of OTSs in the chemical industry evolved from pioneering work to 269 

common practice [54]. Today, Digital Twins are widely used in industries with high capital 270 

investment, complex processes and severe consequences of plant or operator failure such as 271 

the offshore oil and gas industry [7, 54, 55]. Older educational facilities for training in the oil 272 

and gas industry were based on physical copies of the control room, which are expensive and 273 

no longer needed [54]. Almost simultaneously with the first appearance of Digital Twins in the 274 

chemical industry, they were used as a tool for control strategy development [54]. In the 275 

beginning, these were relatively simple control engineering tasks, but they became more 276 

complex with the advancing development of Digital Twins [54, 55]. 277 

Dudley et al. (2008) [7] described the use of a Digital Twin of a pebble bed modular reactor 278 

plant for the development and testing of control strategies before using them on the real 279 

plant. He et al. (2019) [4] described the use of a Digital Twin for the Tennessee Eastman 280 

benchmark process. Effectiveness and performance of the Digital Twin in the development of 281 

control strategies were demonstrated in the presence of realistic fault scenarios. Three types 282 

of process faults, i.e., sensor faults, actuator faults and process disturbances were investigated 283 

and the corresponding fault size and temporal behaviour were discussed. All simulation 284 

studies and numerical results indicated that the proposed configurations are valid for safe 285 

operations in the event of a process fault. Zhang et al. (2019) [6] described the use of a Digital 286 

Twin for carbon emission reduction in intelligent manufacturing. Here, the plants' carbon 287 

emission is predicted by the Digital Twin model. A carbon emission control strategy was then 288 

optimised utilising the Digital Twin, to minimise exhaust gas emissions. 289 

Compared to chemical processes, the application of Digital Twins for bioprocesses is still in its 290 

infancy. Thoroughness is required for modelling bioprocesses since a wide variety of parallel 291 

reactions take place at the same time. Even small changes of key process variables, such as pH 292 

or temperature, may have an immense influence on the kinetics [33]. 293 

Pörtner et al. (2011) used an “early-stage” Digital Twin for the optimisation of process control 294 

strategies for mammalian cell cultivations [56]. The developed bioprocess simulator is a digital 295 
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replica of the cultivation of mammalian cell lines in a small scale STR. The bioprocess simulator 296 

was used to simulate the impact of various constant feed rates of glucose and glutamine 297 

during fed-batch on cell density and antibody concentration of a mammalian cell line. The feed 298 

rates were determined by design of experiments (DoE) methods. By using the bioprocess 299 

simulator, the cultivation process could be optimised in a considerably shorter time and fewer 300 

experiments compared to process control optimisation on the real process. 301 

In a contribution by Hass et al. [17] the utilisation of an industrial biotechnology OTS was 302 

presented. Control strategies that were developed using a new bioethanol plant OTS 303 

illustrated the potential for enhanced resource efficiency and reduced energy consumption. 304 

According to the authors, the potential savings in raw materials have a direct impact on the 305 

long-term profitability of the bioethanol plant and enables a reduction of operating costs. By 306 

using the OTS, the time course and dynamics of the entire plant could be analysed and 307 

subsequently optimised using new process control strategies. Performing such a study on a 308 

real plant would have been overly complex and expensive, if not impossible. 309 

3 Digital Twins as training and educational tools 310 

Digital Twins or ‘Digital Twin-like’ simulators may also be used in industry to train reactor and 311 

plant operators and in academia to educate future control and process engineers. In this 312 

context, Digital Twins are usually referred to as OTSs [9–11, 57]. 313 

OTSs became increasingly popular since the mid-twentieth century, for the use in various 314 

sectors, including the chemical and related industries [10, 54]. The reason was the increasing 315 

complexity of process engineering plants with sophisticated automation and process control 316 

strategies placing enormous demands on the skills of the process operators [10, 54]. Several 317 

papers were published reviewing the development and use of OTSs in the chemical process 318 

industry [54, 58, 59]. 319 

OTSs offer the possibility to train future reactor operators and bioprocess engineers in a very 320 

practical way without carrying out the real process. Even actions to compensate process 321 

malfunctions may be trained safely. Impairments on ongoing production processes due to 322 

training are avoided. OTSs can be described as “early-stage” Digital Twins. 323 

The development and use of OTSs particularly for bioprocesses are beginning to attract 324 

increasing academic interest [10]. Several research groups have investigated the applications 325 



15 
 

of OTSs for bioprocesses. The common premise of the presented research works confirms 326 

experiences from the chemical industry. Model-based OTSs are an efficient means to improve 327 

the training experience of students and to increase plant operators skills in handling complex 328 

bioprocesses [13, 14, 16, 60, 61]. 329 

Table 3 gives an overview of already existing OTSs for bioprocesses. 330 

Table 3 OTS applications for bioprocesses and biorefineries [10] 331 

Application Development tools Validation Reference 

Conceptual design of 2-step 
biodiesel synthesis process 
(theoretical 120,000 t per year 
capacity biorefinery) 

Aspen Plus Dynamics 

Aspen OTS Framework 

Unknown Ahmad et 
al. [62] 

30 L jacketed batch reactor 
hydrodynamic and thermal 
behaviour parameterisation 

Unisim Design Simulated temperature 
profiles compared with 
laboratory reactor 
temperature 
measurements 

Balaton et 
al. [63] 

Anaerobic biogas production in a 
10 L laboratory reactor 

FORTRAN (biological and 
physicochemical sub-
models) 

WinErs (reactor and plant 
sub-models, plus 
automation, process 
control and GUI) 

Experimental data from 
literature validated with 
simulation results 

Blesgen and 
Hass [16] 

Bioethanol production from S. 
cerevisiae (15 L STR) and Green 
Fluorescence Protein production 
using E. coli (6 L fed-batch 
bioreactor) 

Biological and 
physicochemical models 
integrated into WinErs as 
Dynamic Link Libraries 
(DLLs) 

Substrate consumption, 
product formation and 
biomass yields were 
compared between 
laboratory reactor and 
simulator runs 

Gerlach et 
al. [57] 

Large-scale commercial 

bioethanol process (Reactors 

ranging in size from 30,000 L to 
280,000 L) 

Process models written in 
C++ were implemented as 
DLLs in WinErs 

Model validation not 
presented 

Gerlach et 
al. [14] 

Integrated cultivation and 
homogenisation for recombinant 
protein production in a 10 L STR 

Process models written in 
C++ were implemented as 
DLLs in WinErs 

Substrate consumption, 
product formation and 
biomass yields were 
compared between 
laboratory reactor and 
simulator runs 

Gerlach et 
al. [64] 

Integrated wastewater 
biodegradation and membrane 
filtration in a 10 L submerged 
membrane bioreactor (SMBR) 

The biological model was 
written and implemented in 
Pascal, while process 
automation and GUI were 
developed using Delphi 
2009 

Experimental data from 
literature validated with 
simulation runs 

González 

Hernández 

et al. [60] 

Describes the development of a 
coding framework combined with 
a commercial process control 

eStIM coding framework 
used for biological and 
process model 

Experimental data from S. 
cerevisiae production 

Hass et al. 
[65] 
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software for rapid process model 
development in chemical and 
biochemical engineering 

development and WinErs is 
used for automation and 
process control 

compared with 
simulation results 

Bioethanol production, crossflow 
filtration and rectification column 
(15 L laboratory bioreactors used 
for EtOH production) 

Process models written in 
C++ were implemented as 
DLLs in WinErs. GRAFCET 
used for developing 
automation sequences 

Laboratory fermenter, 
membrane filtration unit 
and distillation runs were 
used to validate simulator 
runs 

Hass et al. 
[17] 

Mammalian cell line cultivation 
with the production of antibodies 
in 2 L laboratory bioreactors 

Process models written in 
FORTRAN were 
implemented as DLLs in 
WinErs 

Experimental data from 
mammalian cell line 
cultivation compared 
with simulation results 

Pörtner et 
al. [56] 

Hass et al. [17] developed one of the earliest OTSs for a complex biorefinery process. OTSs 332 

were created for the bioethanol fermentation and the distillation process. Also, a separate 333 

biomass power plant training simulator was developed. The mathematical process models 334 

were created and implemented using the FORTRAN programming language [65]. The process 335 

control software WinErs [20] was used to link process control and the simulation models. PCS-336 

like GUIs were developed to obtain full operator training simulators. Functions were 337 

implemented to simulate the processes at different speeds depending on the desired training 338 

target. The different OTSs were designed for the training of students as well as industrial 339 

operators in the handling of biorefineries and biomass power plants. Encouraging training 340 

outcomes were reported [10, 17]. 341 

A research project by Gerlach et al. [61] presented an OTS for the training of bioengineering 342 

students and plant operators on the operational procedures and production skills required in 343 

recombinant protein production processes. To enable the model to accurately represent the 344 

complex relations of factors in a recombinant protein production process, the authors 345 

outlined that several metabolic interactions affecting biomass yield, productivity and cellular 346 

viability need to be mapped in the OTS model. To maintain numerical efficiency, a trade-off 347 

between model complexity and accuracy had to be found by capturing the most important 348 

metabolic processes in the OTS model, without the model being cumbersome and numerically 349 

difficult to calculate. The effectiveness of OTS training for the education of bioengineering 350 

students was evaluated with promising results [10, 61]. 351 

Another possible application of OTSs is their use for training in the context of control 352 

engineering. Currently, training in control engineering is frequently theoretical and abstract, 353 

since investigations of different control strategy behaviour in real processes are difficult, time 354 

and cost-intensive and the number of available plants for training is limited. With the help of 355 
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Digital Twins or other simulation tools, a wide variety of control strategies may be investigated 356 

in a short time and their impact on bioprocess performance can be demonstrated. In future, 357 

applications of OTSs will become even more diverse. New control strategies may be tested 358 

first on the OTSs. This guarantees safe operation of the real plant. Furthermore, full plant 359 

process control and operation strategies may be developed and optimised based on OTSs or 360 

Digital Twins. 361 

4 Case Study 362 

The objective of this case study, which is based on a work of Appl et al. [8],  is to demonstrate 363 

the methodology and advantages of Digital Twins for the development of bioprocess control 364 

strategies using a fed-batch cultivation of S. cerevisiae as an illustrative example. Two process 365 

control strategies (respiratory quotient (RQ) feedback control and OLFO control)  were 366 

developed and optimised using the “early-stage” Digital Twin “Simultaneous saccharification 367 

and fermentation simulator” (SSF-BC-Simulator). The target for both control strategies was to 368 

maximise the dry biomass concentration (S. cerevisiae) in a cultivation time of 48 h.  369 

4.1 Digital Twin “SSF-BC-Simulator” 370 

The Digital Twin “SSF-BC-Simulator” is a further development of the “BioProzessTrainer” [33, 371 

66]. It is used to train bioengineering students for the operation of bioprocesses as well as a 372 

control strategy development tool. 373 

The Digital Twin can map the starch hydrolysis, the cultivation of S. cerevisiae and the whole-374 

cell biocatalysis of ethyl (S)-3-hydroxybutyrate from ethyl acetate in a small scale STR (Biostat 375 

C, 20 L, B. Braun). The development of the “SSF-BC Simulator” was carried out using the 376 

procedure described in section 2.2. The integrated dynamic mathematical model was written 377 

in C++ and was implemented in WinErs [20, 65]. Using the Digital Twin, it is possible to 378 

accelerate the simulation of the bioprocesses up to 100-fold. The Digital Twin can be 379 

monitored and operated via the GUI shown in Fig. 2.  380 



18 
 

 381 

Fig. 2 GUI of the early stage Digital Twin “SSF-BC-Simulator” [20], with illustrations e.g. STR, tanks, 382 
pumps or sampling vessels that represent the real process, display windows e.g. temperature, pH 383 
value or DO to monitor the virtual process and buttons to set e.g. simulation speed, start conditions 384 
or stirrer speed 385 

The GUI  in Fig. 2 presents the process equipment (e.g. reactor, feed tanks…) as well as all 386 

measured value displays (e.g. temperature, pH-value, DO…) and all essential functions of the 387 

control system (e.g. temperature or DO control) to the user of the Digital Twin. Behind each 388 

measured value display or control button, sub-models represent the real measuring or control 389 

instrument. The reactor properties and the biological process are mapped in the dynamic 390 

mathematical model of the Digital Twin. The GUI is part of the control and automation model 391 

within the Digital Twin. To use the Digital Twin for the development, optimisation and 392 

realisation of control strategies, it is therefore important that the GUI corresponds to the PCS 393 

of the real process with high similarity. 394 

4.1.1 Parametrisation of the Digital Twin “SSF-BC-Simulator” 395 

For the parameterisation of the dynamic mathematical process model implemented in the 396 

Digital Twin “SSF-BC-Simulator”, a variety of parameterisation experiments were carried out, 397 

using batch and fed-batch cultivations. 398 
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The procedure of model parameterisation will be illustrated using a dataset from a laboratory 399 

experiment where an aerobic fed-batch cultivation was carried out in a small scale STR (Biostat 400 

C, 20 L, B. Braun). The temperature was controlled at 30 °C, the pH value at 4.5 and the DO at 401 

10 %. At the beginning of the cultivation, a nutrient medium was supplied in the STR (Batch 402 

medium). After the batch phase of the cultivation, a fed-batch nutrient medium was fed to 403 

the STR (see Table 4). 404 

Table 4 Nutrient media composition 405 

Component Batch medium Fed-batch medium 

Glucose 5.0 g L-1 300 g L-1 

Yeast extract 0.6 g L-1 40 g L-1 

Peptone from soy 0.6 g L-1 40 g L-1 

Ammonium sulphate 0.6 g L-1 40 g L-1 

During the cultivation process, the following state variables required for process monitoring 406 

and process control were measured (see Table 5). 407 

Table 5 Measured state variables during the parametrisation experiment 408 

Measured state variable Abbreviation Unit 

Substrate (glucose) concentration S g L-1 

Product (EtOH) concentration P g L-1 

Dry biomass (S. cerevisiae) concentration X g L-1 

Fed-batch medium feed rate FeedS ml min-1 

Oxygen in the exhaust gas O2 % 

Carbon dioxide in the exhaust gas CO2 % 

After the experiment was carried out, the model of the Digital Twin “SSF-BC-Simulator” was 409 

parameterised using the Nelder-Mead simplex algorithm, written in R [67], to adjust the 410 

values of selected parameters to match the simulated with the measured data satisfactorily.  411 

Fig. 3 and Fig. 4 present the measured state variables of the fed-batch S. cerevisiae cultivation 412 

in a small scale STR compared to the simulated time courses of the Digital Twin (after 413 

parameterisation). 414 
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 415 

Fig. 3 Comparison of measured data (exp) from a small scale STR with simulation results (sim), S: 416 
substrate (glucose) P: product (EtOH), X: dry biomass concentration (S. cerevisiae). The bottom figure 417 
shows substrate feed profile. 418 

 419 

Fig. 4 Comparison of measured exhaust gas data (CO2, O2) and calculated RQ values from a small 420 
scale STR experiment (exp) with simulation results (sim). The bottom figure shows substrate feed 421 
profile. 422 

Fig. 3 shows that in the batch phase of the experiment (0-7 h), glucose was consumed. Ethanol 423 

(EtOH) was formed, which was subsequently metabolised again (diauxic growth). The biomass 424 
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density shows a slight increase during the batch phase. After the substrate feed has been 425 

activated (7-25 h), the dry biomass concentration increases to a value of more than 30 g L-1. 426 

At a processing time of 25 h, the substrate feed was increased by a factor of almost 10, which 427 

resulted in an increase of the glucose concentration to more than 10 g L-1. An increase in the 428 

ethanol concentration to more than 45 g L-1 was observed, due to the Crabtree effect. The 429 

high ethanol concentration inhibited the growth of S. cerevisiae and the dry biomass 430 

concentration stagnated at a level of 30 g L-1. After the substrate feed has been reduced, the 431 

glucose concentration decreased to nearly 0 g L-1, followed by ethanol consumption down to 432 

a concentration of 15 g L-1. However, after 22 h of process time, no further biomass growth 433 

could be observed. 434 

In Fig. 4 it can be seen that these effects are also reflected in the measured exhaust gas values. 435 

Special attention should be paid to the course of the RQ value (see section 4.2.2 for details). 436 

At the beginning of the batch phase (0-3 h), the RQ rises to a value above 3, indicating ethanol 437 

formation. After the initial phase, the RQ value dropped below 1, now indicating ethanol 438 

consumption. At the beginning of substrate feeding, a parallel increase in CO2 formation and 439 

O2 consumption can be observed, thus indicating good aerobic growth of S. cerevisiae. During 440 

this phase, the RQ settled at a value around 1.0. From a processing time of 25 h, the substrate 441 

feed was strongly increased. In this period a large increase in CO2 formation can be seen, 442 

however, the consumption of O2 increases only slightly, leading to an RQ value of above 3. 443 

This high RQ value again indicates the formation of ethanol, which is confirmed by the offline 444 

ethanol concentration measurements. At the end of the cultivation, both the formation of CO2 445 

and the O2 consumption value dropped close to zero, indicating weak metabolism and poor 446 

growth. These observations confirm, that particularly the RQ-value is a valuable indicator for 447 

various metabolic effects as also stated previously [68]. 448 

4.1.2 Digital Twin "SSF-BC-Simulator" for the development of control strategies  449 

To ensure that the Digital Twin is suitable for the development of control strategies for the 450 

cultivation of S. cerevisiae, it must be able to represent the time courses of the experimental 451 

data described in Fig. 3 and Fig. 4. These time courses do not have to be simulated exactly, 452 

but the associated effects must be reproduced. For the development of the RQ feedback 453 

control strategy utilising the Digital Twin, it is important that exhaust gas measurements, RQ 454 

value time course and associated effects can be mapped. For the development of the OLFO 455 
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controller with the Digital Twin, it is necessary to simulate the course of the concentrations of 456 

substrate, product and biomass and the corresponding effects. 457 

Fig. 3 shows that the time course of the measured variables can be mapped by the Digital Twin 458 

with a high agreement. Also, ethanol formation due to the Crabtree effect can be represented 459 

by the Digital Twin (0-3 h and 25-33 h). It is also clearly recognisable that high ethanol 460 

concentrations inhibit the growth of the cultivated S. cerevisiae strain in the simulation (30-461 

52 h). 462 

Fig. 4 illustrates that the time courses of the measured exhaust gas values can almost be 463 

exactly reproduced by the Digital Twin. Also, in the simulation, an increase in the RQ value 464 

occurs if ethanol is formed due to the Crabtree effect (0-3 h and 25-33 h). Furthermore, at the 465 

end of the simulated cultivation, almost no CO2 is formed or O2 is consumed, corresponding 466 

to a low growth rate. 467 

The results presented in Fig. 3 and Fig. 4 illustrate the high potential of the Digital Twin for the 468 

development of an RQ feedback control strategy and an OLFO strategy for the cultivation of 469 

S. cerevisiae. In the presented study, the control target was to maximise the dry biomass 470 

concentration (S. cerevisiae). To achieve this target, it is important to dose the substrate feed 471 

in such a way that the cells are sufficiently supplied with glucose. However, overdosing 472 

substrate may lead to ethanol formation (Crabtree effect), which then might cause growth 473 

inhibition. 474 

4.2 Digital Twin based development of control strategies for the cultivation of S. 475 

cerevisiae 476 

During process control strategy development, the different strategies were first applied to the 477 

“SSF-BC-Simulator”. Simulations with varying controller designs and tunings were then carried 478 

out on the Digital Twin until the desired controller performance was achieved. Afterwards, 479 

the experimental validation of the control strategies on the real plant took place. If the control 480 

result was still unsatisfactory, further controller improvements were tested using the Digital 481 

Twin, before validating the controllers on a real cultivation process. By using the Digital Twin, 482 

many complex experiments in the STR with elaborate preparation, execution and analysis 483 

could be avoided in the development of the control strategies, which resulted in a resource-484 

saving of over 50 %. Also, the acceleration mode of the Digital Twin offered a significant 485 

reduction in development time. 486 
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4.2.1 Experimental setup 487 

To realise a smooth transfer of the control strategies between the “twins”, the Digital Twin 488 

and the small scale STR were connected to the identical process control system WinErs [20], 489 

in which also the controllers were implemented (see Fig. 5).  490 

 491 

Fig. 5 Linking of STR, Digital Twin and PCS (with associated control strategies) in the Digital Twin 492 
based development of control strategies for the cultivation of S. cerevisiae 493 

Since both, the real STR and the Digital Twin were connected to the identical PCS, the control 494 

strategies could be quickly and variably applied and transferred to the real and simulated 495 

process. Both the PCS and the control strategies (RQ feedback and OLFO) were realised in 496 

separate coupled WinErs projects, which leads to high compatibility. 497 

4.2.2 Development of respiratory quotient (RQ) feedback control for the cultivation of S. 498 

cerevisiae 499 

The RQ feedback control strategy is an established soft sensor control strategy used for fed-500 

batch cultivations of S. cerevisiae [68]. To ensure optimal growth of S. cerevisiae the RQ should 501 

be kept close to a value of 1.0. For the determination of the RQ value, the composition of the 502 

exhaust gas from the reactor during the cultivation is measured using a gas analyser (SIDOR, 503 

Sick). The RQ value can be calculated from the measured mole fractions of O2 and CO2 in the 504 

supply air and the exhaust gas (eq. 1-3), 505 

𝑦𝑖,0 = 1 − (𝑦𝑂2,0 + 𝑦𝐶𝑂2,0) (1) 

Stirred Tank Reactor (STR)

Process 
values

Set 
points

Process Control System
(PCS)

Digital Twin 
“SSF-BC-Simulator”

RQ feedback 
control strategy

or 

OLFO control 
strategy

or
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𝑦𝑖,1 = 1 − (𝑦𝑂2,1 + 𝑦𝐶𝑂2, 1) (2) 

𝑅𝑄 =

(𝑦𝐶𝑂2, 1 ∙  (
𝑦𝑖,0

𝑦𝑖,1
)) − 𝑦𝐶𝑂2,0

𝑦𝑂2,0 − (𝑦𝑂2,1 ∙
𝑦𝑖,0

𝑦𝑖,1
)

 (3) 

where yi,0 is the mole fraction of inert components in the supply air, yi,1 is the mole fraction of 506 

inert components in the exhaust gas, yO2,0 is the mole fraction of O2 in the supply air 507 

(assumption: 0.2096), yO2,1 is the mole fraction of O2 in the exhaust gas, yCO2,0  is the mole 508 

fraction of CO2 in the supply air (assumption: 0.00035) and yCO2,1 is the mole fraction of CO2 in 509 

the exhaust gas. 510 

To realise the RQ feedback control strategy a PI controller was chosen. Based on the difference 511 

between the RQ value and RQ setpoint, the PI controller calculated the appropriate substrate 512 

feed and transmitted it to the bioreactors digital control unit (DCU) every 5 minutes. 513 

In the development process of the RQ feedback control strategy on the Digital Twin, various 514 

RQ value setpoints were tested, the controller parameters (gain, integration time) of the PI 515 

controller were adjusted and the transfer intervals of the calculated substrate feed rates to 516 

the DCU were varied. Furthermore, different ratios of glucose and nitrogen sources in the feed 517 

medium were investigated. To achieve the predetermined control target of 50 g L-1 after a 518 

processing time of 48 h, four simulations on the Digital Twin were performed.   519 

The transfer of the RQ feedback control strategy to the real process took place after 520 

simulations on the Digital Twin yielded a dry biomass concentration of more than 50  g L-1 521 

within 48 h. Then, the RQ feedback control strategy was experimentally validated on the real 522 

cultivation process in the small scale STR. The results of the real RQ feedback-controlled 523 

cultivation of S. cerevisiae in a small scale STR are presented in Fig. 6. 524 
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 525 
Fig. 6 Results of an RQ feedback-controlled S. cerevisiae cultivation in a STR 526 

Fig. 6 (b) shows that the substrate feed (FeedS) started at 3h. At this time, the batch phase was 527 

finished and the RQ Feedback controller was switched on. After that, the mean substrate feed 528 

rate increased steadily up to 18 h. The addition of nutrient medium leads to a steady increase 529 

in dry biomass concentration up to 25 g L-1 (Fig. 6 (a)). Fig. 6 (c) shows that both, O2 530 

consumption and CO2 formation, increase during the first 18 h. The resulting RQ value 531 

stabilises to a value close to 1.1. After a processing time of 18 h, the RQ value increased to a 532 

value of up to 6, resulting in a substrate feed rate, controlled to the set minimum value of 0.05 533 

ml min-1. When the substrate was depleted, the RQ value dropped below 1.1 again (approx. 534 

25 h), the substrate feed rate started to increase. At processing times of 43 h and 47 h, the 535 

same effect observed at 18 h can be seen in an attenuated form. One explanation for the 536 

sudden increase in the RQ value is the composition of the nutrient medium. Among other 537 

components, yeast extract was used as a nitrogen source, which contains high amounts of 538 

both nitrogen and carbon. The fraction of residual yeast extract in the medium was rather 539 

high, leading to an accumulation of carbon sources and thus to an increasing RQ value due to 540 

the Crabtree effect. In the Digital Twin model, the carbon component in the nitrogen sources 541 

was not considered, which is why this effect could only be recognised in the real experiment. 542 

Despite this limitation of the Digital Twin model, an RQ feedback control could be developed 543 

(a)

(b)

(c)
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based on the Digital twin, leading to more than 50 g L-1 dry biomass concentration in the real 544 

process, with less than 10 g L-1 ethanol produced within 48 h. 545 

It took about 2 days to develop the RQ feedback control for the cultivation of S. cerevisiae on 546 

the Digital Twin (simulations, controller adaptations). Real cultivation of 48 h in a STR, 547 

including preparation and evaluation, is expected to take about 1 week. If instead of the 548 

simulations on the Digital Twin, real cultivations had to be carried out during the control 549 

strategy development process, the development time would have been extended to up to 3 550 

weeks. Besides the significant time savings, the consumption of resources (nutrient media 551 

components, energy...) was also significantly reduced due to the reduced number of real 552 

cultivations. 553 

4.2.3 Development of open-loop-feedback-optimal (OLFO) control for the cultivation of S. 554 

cerevisiae 555 

The principle of the OLFO control strategy has been described in section 2.3.2. The suitability 556 

of the “SSF-BC-Simulator” as a tool for the development of the OLFO control strategy for the 557 

cultivation of S. cerevisiae was illustrated in Fig. 3, section 4.1.  558 

The core of the OLFO controller is a relatively simple mathematical model for the cultivation 559 

of S. cerevisiae, which is different from the process model within the presented Digital Twin. 560 

The controller model is limited to map the consumption of glucose and nitrogen, the growth 561 

of S. cerevisiae and the formation of the side product ethanol. The mathematical OLFO 562 

controller model was adapted based on either measured (real process) or simulated (Digital 563 

Twin) concentrations of substrate (glucose), product (ethanol) and biomass density (S. 564 

cerevisiae). In the optimisation part of the OLFO controller, substrate feed rate trajectories 565 

were optimised at several points during the real or simulated (Digital Twin) process using the 566 

adapted mathematical process model, where the adaption was based on the data available 567 

up to the actual processing time. The substrate feed rate trajectory yielding the highest 568 

concentration of dry biomass at the end of the simulated cultivation (OLFO process model) 569 

was transferred to the PCS at each time point of model adaption and process optimisation. 570 

During controller development using the Digital Twin, six simulations were carried out in total. 571 

After each simulation, the simulated cultivation results were evaluated and the control 572 

strategy was adjusted to approach the control target (50 g L-1 dry biomass concentration 573 
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within 48 h). The result of the first OLFO controlled simulated cultivation of S. cerevisiae is 574 

presented in Fig. 7. 575 

 576 

Fig. 7 Result of the first OLFO controlled simulated cultivation of S. cerevisiae using the Digital Twin 577 
"SSF-BC-Simulator" 578 

In the first OLFO controlled Digital Twin cultivation of S. cerevisiae, only a low dry biomass 579 

concentration of 4 g L-1 could be achieved within the processing time of 48 h, due to low 580 

substrate feed rates (max. 0.03 ml min-1) determined by the OLFO controller. A detailed 581 

analysis revealed an ethanol inhibition in the mathematical process model already starting at 582 

less than 5 g L-1. Consistently, the OLFO controller calculated low substrate feed rates to avoid 583 

ethanol formation. However, the resulting low glucose concentration limited growth. 584 

Increasing the ethanol inhibition constant in the mathematical process model to approx. 585 

30  g L-1 led to an increase in the final simulated dry biomass concentration (15 g L-1). However, 586 

the set control target could not yet be achieved. Based on subsequent simulations with the 587 

Digital Twin, further controller model adjustments such as modifying the metabolic rates 588 

related to the Crabtree effect, adjustments of uptake rates, etc. were performed. The intervals 589 

for model adaptation and subsequent substrate feed optimisations were varied and different 590 

compositions of the nutrient medium were examined via simulations with the Digital Twin. 591 
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In the sixth OLFO controlled cultivation simulated on the Digital Twin, the set control target 592 

eventually was exceeded by reaching a final biomass density of 80 g L-1 within 48 h (Fig. 8) and 593 

less than 10 g L-1 ethanol. 594 

 595 

Fig. 8 Sixth OLFO controlled cultivation of S. cerevisiae on the Digital Twin "SSF-BC-Simulator" 596 

The resulting OLFO controller (developed on the Digital Twin) was transferred to the real 597 

process for experimental validation. Fig. 9 shows the results of the OLFO controlled S. 598 

cerevisiae cultivation. 599 
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 600 

Fig. 9 OLFO controlled S. cerevisiae cultivation in a 20 L STR (Biostat C, B. Braun) 601 

In the OLFO-controlled real cultivation, a dry biomass concentration of more than 50 g L-1 was 602 

achieved within 48 h. Both, the substrate feed rates (Fig. 9 (b)) and the dry biomass 603 

concentration (Fig. 9 (a)) increase steadily over the entire process time. The ethanol 604 

concentration never exceeded 20 g L-1. 605 

It took about 2 weeks to develop the OLFO control for the cultivation of S. cerevisiae on the 606 

Digital Twin (simulations, controller adaptations). Real cultivation of 48 h in a STR, including 607 

preparation and evaluation, is expected to take about 1 week. If instead of the simulations on 608 

the Digital Twin, real cultivations had to be carried out during the control strategy 609 

development process, the development time would have been extended to up to 2 months. 610 

Besides the significant time savings, the consumption of resources was also significantly 611 

reduced due to the smaller number of real cultivations. 612 

4.2.4 Case study discussion 613 

This case study demonstrated the enormous potential of the Digital Twin “SSF-BC-Simulator” 614 

to support the control strategy development and optimisation for the cultivation of S. 615 

cerevisiae. By utilising the Digital Twin, it was possible to effectively develop both control that 616 

uses online values (RQ feedback control) and control that uses offline values (OLFO control). 617 

By conducting simulations using the Digital Twin, real experiments could be avoided that 618 

(a)

(b)
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would have been associated with the consumption of resources and time. By using the Digital 619 

Twin, an estimated amount of resources of about 60 % and time of about 50 % could be saved 620 

in the development process of both control strategies compared to conventional control 621 

strategy development. 622 

In this case study, we were able to demonstrate the beneficial utilisation of Digital Twins for 623 

the development, optimisation and realisation of bioprocess control strategies. An important 624 

prerequisite for the Digital Twin utilisation for control development is the validation of a high 625 

accuracy in mapping the bioprocess dynamics.  626 

The presented Digital Twin “SSF-BC-Simulator” is also capable of mapping the enzymatic 627 

process of starch hydrolysis as well as the biocatalysis of ethyl (S)-3-hydroxybutyrate. For 628 

these processes various control strategies will be developed in future, supported by the Digital 629 

Twin. 630 

5 Conclusion and future perspectives 631 

This chapter demonstrated the enormous potential of Digital Twins or “early-stage” Digital 632 

Twins as a control strategy development tool and their application to bioprocesses. The use 633 

of Digital Twins enables the development of advanced controllers that increase the efficiency 634 

of bioprocesses. By accelerated and parallel running simulations on the Digital Twin, the 635 

development time is drastically reduced compared to conventional control strategy 636 

development. In the past, production usually had to be interrupted to investigate the dynamic 637 

behaviour of the bioprocessing plant under consideration, as well as the dynamics of different 638 

controlled systems, which is necessary for the development of control strategies. By using 639 

Digital Twins, the production plants can remain in operation during controller development 640 

and optimisation. The presented case study demonstrates a rapid and effective controller 641 

transfer to the real plant as soon as the new controllers have been successfully developed 642 

utilising the Digital Twin. An ideal process operation not only requires well-designed and tuned 643 

controllers but also well-trained plant operators. This can be achieved using OTSs that may be 644 

considered as “early-stage Digital Twins”. From the further development of OTSs, educational 645 

Digital Twins have emerged, which are characterised by the following features: 646 

(1) High fidelity representation of biological, physico-chemical, and chemical kinetics 647 
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(2) Detailed technical simulation of the reactor environment including peripheral 648 

equipment 649 

(3) Realistic investigation of various control strategies 650 

(4) Accelerated and resource-saving simulation (digital experimentation and training) 651 

As new advanced bioprocessing plants are put into operation worldwide, the challenge of 652 

covering the need for suitably qualified operators to run these plants will increase. Educational 653 

Digital Twins are an effective tool to meet this challenge. In the future, simple and cost-654 

effective educational Digital Twin development tools are required to adequately handle the 655 

additional complexities present in bioprocesses. 656 
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